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Double Dispersion effects on free convection 
along a vertical Wavy Surface in Porous Media 

with Variable Properties 
R. Bhuvanavijaya, B. Mallikarjuna 

Abstract— In the present paper, we analyzed double diffusive free convection past a vertical wavy surface embedded in a fluid saturated 
porous medium with variable properties. The Darcy law is assumed to describe the homogenous fluid saturated porous medium. The 
temperature dependent variable properties (variable viscosity and variable thermal conductivity) are considered. The fluid flow, momentum, 
energy and solutal governing equations are transformed into boundary layer non-dimensional nonlinear ordinary differential equations with 
specified transformation and then solved with numerical technique. The results are reported for various physical parameters; variable 
viscosity, variable thermal conductivity, thermal dispersion and solutal dispersion and amplitude of the wavy surface on hydrodynamic 
velocity, temperature and concentration distributions as well as rate of heat (Nusselt number) and mass (Sherwood number) transfers. The 
numerical results obtained in the present method compared with previously published results and found to be in good agreement.  

Index Terms— Vertical Wavy Surface, Double Dispersion Effects, Variable Properties, Darcy Porous Media, Free convection.   

——————————      —————————— 

1 INTRODUCTION                                                                      
n recent years, the study of natural convective flow, heat 
and mass transfer in porous media has received 

considerable interest in the literature. The interest for such 
studies is motivated by grain storage insulations, nuclear 
waste disposal, oil extraction, ground water pollution, resin 
transfer modeling, dispersion of chemical contaminants 
through water – saturated soil, fibrous insulations, packed 
beds and geo thermal systems. Comprehensive reviewers of 
the convection through Darcy porous media have been 
reported by Nield and Bejan [1] and by Ingham and Pop [2]. 
Darcy’s law states that the volume averaged velocity is 
proportional to the pressure gradient. The present study deals 
with free convective flow on a vertical wavy surface 
embedded in a saturated porous medium. Natural convection 
from wavy surfaces is a topic of fundamental importance in 
heat transfer devices, such as flat-plate solar collectors and 
flat-plate condensers in refrigerators. Mainly, roughness 
elements disturbs the flow and alters the rate of heat and mass 
transfer, this is type of irregularities mostly occur in 
manufacturing. At first, Rees and Pop [3] investigated free 
convection along a vertical wavy surface in a porous medium. 
Cheng [4] studied natural convection heat and mass transfer 
near a vertical wavy surface with constant wall temperature 

and concentration in a porous medium. 

Recently, Shalini and Rathish Kumar [5] investigated the 
influence of variable heat flux on natural convection along a 
corrugated wall in porous media. Mohamed et.al [6] studied 
combined radiation and free convection from a vertical wavy 
surface embedded in porous media. Elgazery and Elazem [7] 
investigated the effects of variable properties on MHD 
unsteady natural convection heat and mass transfer over a 
vertical wavy surface. Rathish kumar and Krishan Murthy [8] 
analyzed Soret and Dufour effects on double diffusive free 
convection from a corrugated vertical surface in a non-Darcy 
porous medium. Neagu [9] analyzed free convective heat and 
mass transfer induced by a constant heat and mass fluxes 
vertical wavy wall in a non-Darcy double stratified porous 
medium. Narayana et.al. [10] studied double diffusive 
convection and cross diffusion effects on a horizontal wavy 
surface in a porous medium. Parveen and Alim [11] 
investigated Joule heating and MHD free convection flow 
along a vertical wavy surface with viscosity and thermal 
conductivity dependent on temperature.  

 The hydrodynamic mixing is called dispersion, which 
is the secondary effect of a porous medium on the fluid flow 
takes place in the result of mixing and recirculation of local 
fluid particles through tortuous paths formed by the porous 
medium solid particles. There has been renewed interest in 
studying double diffusive convection due to the effect of 
thermal and solutal dispersions; these are additional energy 
and concentration mass transport process. In certain thermal 
and solutal dispersion applications such as those involving oil 
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reservoir and geothermal engineering applications such as 
ceramic processing, sensible heat storage beds and petroleum 
recovery etc., In view of the aforesaid applications, many 
authors have analyzed the effects of thermal and solutal 
dispersion on convective heat and mass transfer through 
porous media. Abbas et.al. [12] studied effects of thermal 
dispersion on free convection in a fluid saturated porous 
medium. Kairi and Murthy [13] considered the double 
dispersion effects to study mixed convection heat and mass 
transfer in a non-Newtonian fluid saturated non-Darcy porous 
medium. Pathak and Ghiaasiaan [14] investigated convective 
heat transfer and thermal dispersion during laminar pulsating 
flow in porous media. The effects of MHD and double 
dispersion on free convection in a non-Darcy porous medium 
saturated with power law fluid are investigated by 
Srinivasacharya et.al [15]. Ramreddy [16] has been studied the 
effects of double dispersion on convective flow over a cone.  

 In view of the above application, the authors are 
envisage to investigate free convection along a vertical wavy 
surface embedded in a fluid saturated porous medium with 
variable properties and double dispersion effects. The 
governing boundary equations for flow mass, momentum, 
energy and concentration are transformed into non-
dimensional nonlinear ordinary differential equations by 
using appropriate transformation and then solved by using 
numerical method. The results are reported graphically for 
various physical parameters for flow velocity, temperature 
and concentration distributions as well as Nusselt number and 
Sherwood number. The present results are compared with 
previously existing results and obtained a very good 
agreement. 

2  FORMULATION OF THE PROBLEM 
We consider the steady, two dimensional laminar, viscous 

incompressible fluid over a vertical wavy plate embedded in a 
saturated porous medium. The configuration of the model and 
coordinate system is shown in fig. 1. We assume that the wavy 
surface is given by  

( ) sin xy x a
l
πσ  = =  

 
                                                 (1) 

Where ‘a’ represents amplitude of the wavy surface and ‘l’ 
represents the characteristics of wavy length. The plate is 
maintained with constant temperature Tw and concentration 
Cw, which are higher than the ambient fluid temperature T∞ 
and concentration C∞. The Darcy law can be used to describe 
the porous medium. In addition, we consider thermal and 
solutal dispersion effects. In view of the above assumptions 
and invoking the boundary layer and Boussinesq 
approximations, the governing boundary layer equations for 

the conservation of mass, momentum, energy and 
concentrations are: 
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The corresponding boundary conditions are 
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where ,u and v are velocity components in x and y
directions respectively. μ is the kinematic viscosity, K is the 
permeability of the porous medium, ρ is the density of the 
fluid, βt is the thermal expansion coefficient, βc is the solutal 
expansion coefficient, g is the acceleration due to gravity, αx, 
Dx and αy,  Dy are the effective thermal and solutal diffusivities 
respectively, have the contribution of both molecular diffusion 
and hydrodynamic dispersion, these can be described as (see 
Telles and Trevisan [17])  

,

,
x y

x y

dv du

D D dv D D du

α α γ α α γ

ζ ζ

= + = + 
= + = + 

                            (7) 

where α is the thermal conductivity, D is the molecular 
diffusivities, γ is the coefficient of thermal dispersion and ζ is 
the solutal dispersion. The fluid properties namely, viscosity 
and thermal conductivities are assumed to be vary as an inverse 
linear and linear function of the temperature respectively and 
these can be written as (see [18-20]) 

( )( )1 1 1 T Tδ
µ µ ∞

∞
= + − or ( )1

rb T T
µ
= −  and ( )1 ( )o E T Tα α ∞= + −  

where  

 b δ
µ∞

= , and 1
rT T

δ∞= − . 

Both b and Tr are constants and their values depend on the 
reference state and the thermal property of the fluid i.e. δ, oα
is the thermal diffusivity at the wavy surface temperature Tw 
and E is a constant depending on the nature of the fluid. In 
general, b>0 for liquids and b<0 for gases. It is worth 
mentioning here that E is positive for fluids such as air and E 
is negative for fluids such as lubrication oils. rθ , which is 
defined by 
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is constant. The parameter rθ  was first introduced by Ling 
and Dybbs [21] It is worth mentioning here that for 0δ →  (i.e.
µ µ∞= =constant) then rθ →∞ , the effect of viscosity is 
negligible. The variable thermal conductivity can be written in 
the non-dimensional form (see [20]) as 

( )1oα α βθ= +       (9) 

where β=E(Tw-T∞) is the thermal conductivity parameter. The 
variation of β can be taken in the range 0.1 0β− ≤ ≤  for 
lubrication oils, 0 0.12β≤ ≤  for water and 0 6β≤ ≤ for air. We 
define the stream functionψ , which is to be satisfied the 
continuity equation (2) such that 

,u v
y x
ψ ψ∂ ∂

= = −
∂ ∂

 

To convert the governing boundary layer equations in non-
dimensional form, we introduce the following dimensionless 
variables 

0
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By using eqs. (7) – (10), the eqs. (3) – (5) reduces to  
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where ( )t w

o

gK T T l
Ra

β
α ν

∞−
=  is the modified - Rayleigh number,  
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∞=  is the kinematic viscosity of the fluid, ( )

( )
c w

t w

C C
N

T T
β
β

∞

∞

−
=

−
 

is the buoyancy ratio, oLe
D
α

=  is the Lewis number, and

( )t w
d

o

gK T T d
Ra

β
α ν

∞−
=  is the pore diameter dependent 

Rayleigh number which describes the relative intensity of the 
buoyancy force, such that d is the pore diameter.  

The associated boundary conditions are given by 

*
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Let us consider the following transformations 

1/2
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Invoking the eq (15) and letting xRa →∞  into eqs. (11) - (14) 
reduces into the following boundary layer equations: 
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where . dDs Raγ= is the thermal dispersion parameter 

. dDc Raζ= is the solutal dispersion parameter. To transform 

Eqs. (16) - (18) into a set of ordinary differential equations, we 

introduce the following similarity transformations 
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Thus, we obtain 
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where prime denotes differentiation with respect to η̂ . 

The associated boundary conditions are 
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                                   (23) 

The engineering design quantities of physical interest include 

Nusselt number and Sherwood numbers which are defined as 
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3 RESULTS AND DISCUSSION 
The problem of free convection along a vertical wavy surface 

embedded in fluid saturated Darcy porous media subject to the 
variable viscosity, variable thermal conductivity and double 
dispersion effects has been investigated. A simple coordinate 
transformation is employed to reduce the governing non-linear 
boundary equations into non-linear ordinary differential 
equations and then employed Runge-Kutta method with 
shooting technique. We restrict the physical parameter values 
1<θr ≤ 5, 1≤β≤5, 0<Ds≤1, 0<Dc≤1, and 0.5≤ξ≤2 with the fixed 
values N=1, Le=1 and a=0.5. In order to validate the present 
method the numerical results obtained using the Runge Kutta 
method with shooting method are compared with Cheng [22] 
results. Table-1 shows the comparison results in the absence of 
variable properties and double dispersion effects (i.e. Ds=0 and 
Dc=0) over vertical wavy surface with Cheng [22] and the 
results are found to be in good agreement.  

We have found the numerical solutions for non dimensional 
velocity, temperature and concentration distributions as well as 
rate of heat and mass transfer coefficients as shown graphically 
in Figs. (2) – (24). The variation of variable viscosity parameter 
(θr) on non-dimensional velocity, temperature and 

concentration distributions is presented in figs. (2) – (4). It is 
noticed from fig. (2) that an increase in variable viscosity  
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
parameter θr resulted in depreciation in velocity distribution 
near the plate up to reach certain value and then increase the 
velocity profile until approaches a constant value (zero) at outer 
boundary layer regime. From figs. (3) and (4) we conclude that 
increasing variable viscosity parameter θr, clearly substantially 
enhances the temperature and concentration distributions.  

The variation of variable thermal conductivity (β) on 
velocity, temperature and concentration distributions is 
illustrated in figs. (5) – (7). The velocity profile results for 
different values of β are given by fig. (5), these results are 
having similar behavior as shown in fig. (2). From fig. (6) it is 
evident that temperature profiles is more pronounced with 
increasing values of β. Conversely, a strong decrease in 
concentration distribution as shown in Fig. (7); occurs with 
increasing values of β.   

The effect of thermal dispersion parameter (Ds) on the non-
dimensional velocity, temperature and concentration is 
depicted in figs. (8) – (10). From fig. (8) we conclude that the 
results of velocity profile reduce near the surface for larger 
values of thermal dispersion parameter and opposite results are 
observed as the radial distance moves far away from the surface 
with increase in thermal dispersion parameter. The presence of 
thermal dispersion in the energy equation gives thermal 
conduction more dominance. It is observed from fig. (9) that 
increasing thermal dispersion parameter tends to enhance the 
temperature distribution. i.e. thermal dispersion enhances the 
transport of heat along radial direction to the plate. It is noticed 

Table-1:  Comparison of the rate of heat and mass transfer 

for a=0, β=0, τ=0 and θr →∞ at N=1, and Le=0.5. 

  1/2
x xNu Ra−  1/2

x xSh Ra−  1/2
x xNu Ra−  1/2

x xSh Ra−  

Le N Cheng [22] Cheng [22] Present Present 

1 4 0.992 0.992 0.9923 0.9923 

10 4 0.681 3.290 0.6809 3.2883 

100 4 0.521 10.521 0.5208 10.5205 

4 1 0.559 1.358 0.5558 1.3565 

4 2 0.650 1.624 0.6510 1.6238 

4 3 0.728 1.852 0.7275 1.8532 
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from fig. (10) that the solutal boundary layer thickness is 
reduced as increase in thermal dispersion parameter.  

The set of figs. (11) – (13) are plotted for the variation of non-
dimensional velocity, temperature and concentration 
distributions across the boundary layer for different values of 
solutal dispersion parameter (Dc). From fig. (11) we noticed that 
an increase in Dc is seen to significantly enhance the 
momentum boundary thickness. It is observed from fig. (12) 
that temperature profile reduced with increase in Dc. It can be 
evident from this figure that as Dc increases thermal boundary 
layer thickness increases. It is observed from fig. (13) that 
increasing the solutal dispersion parameter (Dc), accelerates the 
concentration of the fluid. Hence the concentration boundary 
layer thickness increases with an increase in solutal dispersion 
parameter (Dc).  

Figs. (14) – (16) illustrate the velocity, temperature and 
concentration distributions for different values of ξ-location. It 
can be found from fig. (14) that velocity profile is increased with 
increase in ξ-location. Hence the hydrodynamic boundary layer 
thickness increases as increase in ξ-location. We noticed from 
figs. (15) and (16) that the similar behavior of temperature and 
concentration profile, in comparison with velocity distribution 
as shown in fig. (14). It is an important to note that it quickly 
reaches similarity solutions not far away from the leading edge.  

The variation of rate of heat and mass transfer (Nusselt 
number and Sherwood number) with streamwise coordinate at 
the wall are shown in figs. (17) – (18) for different values of 
variable viscosity parameter (θr). It is noticed from these figures 
that both Nusselt number and Sherwood number decreases 
with increase in θr. Hence, it is clear that increase in θr results an 
depreciation in the amplitude of the Nusselt number and 
Sherwood. Figs (19) – (20) represent the variation of Nusselt 
number and Sherwood number for different values of variable 
thermal conductivity parameter (β). Figs. (19) – (20) 
demonstrates that Nusselt number and Sherwood number 
reduces considerably for larger values of β. Figs. (21) – (22) 
reveals that enhancement of thermal dispersion parameter 
results enhancement in the amplitude of the Nusselt number 
and Sherwood number. The variation of Nusselt number and 
Sherwood number for different values of solutal dispersion 
parameter (Dc) is given in figs. (23) – (24). Figs. (23) – (24) 
exhibits the similar behavior of Nusselt number and Sherwood 
with streamwise coordinate, in comparison with what observed 
in figs. (21) – (22). Figs. (25) – (26) illustrates the variation of 
Nusselt number and Sherwood number for different values of 
the amplitude of the wavy surface. For ‘a = 0’ the vertical wavy 
surface reduces to vertical flat surface. It is noticed from figs. 
(25) and (26) that increasing the amplitude of the wavy surface, 
clearly substantially enhances the amplitude of the Nusselt 
number and Sherwood number with streawise coordinate.  

 

3 CONCLUSSIONS 
 The effect of thermal and solutal dispersion on free 
convection along a vertical wavy surface with temperature 
dependent viscosity and thermal conductivity analyzed and the 
governing boundary non-dimensional equations are solved by 

employing Runge-Kutta method with shooting technique. The 
main results in this study are as follows: 

1. Increasing variable viscosity parameter leads to 
decrease velocity distribution, Nusselt number and 
Sherwood number while temperature and 
concentration distributions are increases. 

2. Increasing thermal dispersion parameter tends to 
increase velocity and temperature distributions as well 
as Nusselt number and Sherwood number while 
opposite results are noticed for concentration profile. 

3. Velocity and concentration distributions as well as 
Nusselt number and Sherwood number are increased 
with increase in solutal dispersion parameter while we 
noticed that opposite results are reported for 
temperature profile. 

4. Increase in the amplitude of the wavy surface results 
an enhancement in Nusselt number and Sherwood 
number. 
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Fig.1. Velocity profile for different values of variable viscosity 
parameter for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5,β=0.5, and 
ξ=1. 
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Fig.2. Temperature profile for different values of variable 
viscosity parameter for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, 
β=0.5, and ξ=1. 
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Fig.3. Concentration profile for different values of variable 
viscosity parameter for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, 
β=0.5, and ξ=1. 
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Fig.5. Velocity profile for different values of variable thermal 
conductivity parameter for N=1, Le=1, Ds=0.3, Dc=0.3, 
a=0.5, θr=1.5, and ξ=1. 
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Fig.6. Temperature profile for different values of variable 
thermal conductivity parameter for N=1, Le=1, Ds=0.3, 
Dc=0.3, a=0.5, θr=1.5, and ξ=1. 
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Fig.7. Concentration profile for different values of variable 
thermal conductivity parameter for N=1, Le=1, Ds=0.3, 
Dc=0.3, a=0.5, θr=1.5, and ξ=1. 
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Fig.8. Velocity profile for different values of Ds for N=1, Le=1, 
Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 
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Fig.9. Temperature profile for different values of Ds for N=1, Le=1, 
Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 
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Fig.10. Concentration profile for different values of Ds for N=1, 
Le=1, Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 
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Fig.11. Velocity profile for different values of Dc for N=1, Le=1, 
Ds=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 
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Fig.12. Temperature profile for different values of Dc for N=1, Le=1, 
Ds=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 

0 0.5 1 1.5 2 2.5 3 3.5 4 4.5 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

 η

 θ

 

 

Dc = 0.1
Dc = 0.3
Dc = 0.5
Dc = 1

 

Fig.13. Concentration profile for different values of Dc for N=1, 
Le=1, Ds=0.3, a=0.5, θr=1.5, β=0.5, and ξ=1. 
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Fig.14. Velocity profile for different values of Dc for N=1, Le=1, 
Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5. 
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Fig.15. Temperature profile for different values of Dc for N=1, 
Le=1, Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5. 
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Fig.16. Concentration profile for different values of Dc for N=1, 
Le=1, Ds=0.3, Dc=0.3, a=0.5, θr=1.5, β=0.5. 
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Fig.17. Axial distribution of the Nusselt number for different values of 
variable viscosity for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, ξ=1, β=0.5. 
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Fig.18. Axial distribution of the Sherwood number for different values of 
variable viscosity for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, ξ=1, β=0.5. 
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Fig.19. Axial distribution of the Nusselt number for different values of 
variable thermal conductivity for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, 
ξ=1, θr=1.5. 
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Fig.20. Axial distribution of the Sherwood number for different values 
of variable thermal conductivity for N=1, Le=1, Ds=0.3, Dc=0.3, a=0.5, 
ξ=1, θr=1.5. 
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Fig.21. Axial distribution of the Nusselt number for different values of 
Ds for N=1, Le=1, β=0.5, Dc=0.3, a=0.5, ξ=1, θr=1.5. 
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Fig.22. Axial distribution of the Sherwood number for different values 
of Ds for N=1, Le=1, β=0.5, Dc=0.3, a=0.5, ξ=1, θr=1.5. 
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Fig.23. Axial distribution of the Nusselt number for different values of Dc 
for N=1, Le=1, β=0.5, Ds=0.3, a=0.5, ξ=1, θr=1.5. 
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Fig.24. Axial distribution of the Sherwood number for different values of Dc 
for N=1, Le=1, β=0.5, Ds=0.3, a=0.5, ξ=1, θr=1.5. 
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Fig.25. Axial distribution of the Nusselt number for different values of ‘a’ for 
N=1, Le=1, β=0.5, Ds, =0.3, Dc=0.3, a=0.5, ξ=1, θr=1.5. 
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Fig.26. Axial distribution of the Sherwood number for different values of 
‘a’ for N=1, Le=1, β=0.5, Ds, =0.3, Dc=0.3, a=0.5, ξ=1, θr=1.5. 
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